
Documentation

Environmental Setup
File Structure
Bot Token
GitIgnore Notes
Bot Main File
Error Messages
Making a New Feature
Getting Data
Code Testing
KeyCloak SSO R&D

Git/GitHub Workflow

wiki

Documentation

Documentation

Learn:

Learn Linux/Bash shell basics: Bash and GitBash for Beginners
Learn Python basics: Python Basics Course
Learn Python Async IO: AsyncIO Documentation

Install:

Install Git Bash shell: GitBash for Windows
Install Python: Python for Windows

1. Navigate/create directory (folder) where the project is
Navigate/create directory

2. Create the python virtual environment
Create venv
The command python -m venv .venv is used:

-m runs a specific Python module
venv is the module for creating virtual environments
.venv is the name of the directory for the environment

3. Activate python virtual environment
Activate venv
Inside the project directory (parent of .venv), run:

. is shorthand for source

./ runs a script using a relative path
activate is the script that starts the environment
You’re in the virtual environment if you see (.venv) in your prompt

. ./.venv/Scripts/activate

4. Using Python and Pip in a virtual environment
Use .venv/bin/pip and .venv/bin/python to use the environment's versions

5. Running the bot for the first time
Run the following commands inside the virtual environment:

Environmental Setup
Getting Started:

Creating a Python Virtual Environment:

https://www.freecodecamp.org/news/linux-command-line-tutorial/
https://www.youtube.com/watch?v=rfscVS0vtbw
https://realpython.com/async-io-python/
https://git-scm.com/downloads/win
https://www.python.org/downloads/

.venv/bin/pip install httpx

.venv/bin/pip install discord

.venv/bin/pip install pyyaml

.venv/bin/pip install audioop-lts

.venv/bin/pip install apscheduler

If you get a "module not found" error, try installing that module with pip .
6. Deactivating the virtual environment

Deactivate venv
Navigate to .venv/Scripts and run:

deactivate

If (.venv) disappears from your prompt, it worked.
7. Creating a server and bot account

Bot Account Creation Tutorial

https://www.upwork.com/resources/how-to-make-discord-bot

Documentation

This is what the project will look like at its parent folder level (top level).

1. main.py :

This is the core file of the Discord bot where the main functionality is implemented.
It initializes the bot, loads the different cogs (modules), and handles events.
Team members are not required to modify this file, allowing the functionality to remain
stable as they develop features in their own cogs and helper functions.

2. cogs/my_cog.py :

This file is designated for specific features or commands that can be added to the bot.
Team members can design their own cogs by defining classes here, which inherit from the
base classes provided by Discord.py .
This modular approach enables each member to work on their features independently.

3. utils/ :

This where we will store source files which aid cog functionality. Within this directory,
there is also a helpers.py file that houses generic functions available to all cogs.

4. utils/helpers.py :

This file is intended to contain utility functions that can be used across different modules
of the bot.
Team members can develop functions that perform specific tasks and can be used in their
cogs, promoting code reusability.

5. cache/ :

This folder is used to store sub-folders containing cache files for the bot.

6. config/ :

This folder is used to store configuration files for the bot/cogs .

File Structure

\

Documentation

The bot token is the password for the bot.
Create a .bot.yaml file in the same directory as the repository.
Add token: {your token} to the file (without the brackets)(this is YAML format for a python
dictionary).

Bot Token

Bot Token:

Documentation

We will often want to add files to the repository directory just to make the bot run on our personal
machines. We may not want to include these files in the actual repo as they are specific to testing.
For instance, a config file that stores user information of the server that the bot is running on would
be an example. We would not want user information of the test environment going on the main
repository.

This is accomplished by adding these files to a file called .gitignore . Just add file or directory
names to the file. If the file or directory you want to ignore is not in the main directory, add another
.gitignore file in its directory.

Example:

Location of the .gitignore file

NOTE: Comments can and should be added for each entry explaining why or what the
entry is for. Comments are denoted by the ‘#’ at the beginning of the line.

Example of gitignore in sub directory:

NOTE: The ‘*’ is a bash wildcard character that represents all entries in a directory. The
‘! .gitignore’ tells git to not ignore the .gitignore file; since we are ignoring all files in

GitIgnore Notes

.gitignore file

this directory.

Additional information for git ignore: gitignore documentation

https://git-scm.com/docs/gitignore

Documentation

Ex: logging.basicConfig(level=logging.INFO)
This code sets the logging level of the bot. Determining the type and amount of
verbose messages sent to the console(terminal) where the bot is running.
level=logging.INFO is the most basic level with minimal output. This could be
replaced with level=logging.DEBUG for more detailed information.

Ex: intents = discord.Intents.all()
Intents in discord are like filters for the types of events the bot will see. The above
code grants all intents(ONLY FOR TESTING, intents should be regulated for real world
use).

Privileged Intents: These require explicit permission to use. You'll need to enable them in
the Discord Developer Portal for your bot. Examples include:

GUILD_MEMBERS : Allows the bot to receive member-related events, such as when
members join or leave the server.
MESSAGE_CONTENT : Allows the bot to receive the content of messages. Necessary for
bots that need to read message content (e.g., for keyword detection).
PRESENCES : Allows the bot to see members' online/offline statuses.

Non-Privileged Intents: These are enabled by default and don't require special permission.
Examples include:

GUILDS : Allows the bot to receive events related to guilds (servers) like server
updates and roles.
GUILD_MESSAGES : Allows the bot to receive messages sent in text channels.
GUILD_REACTIONS : Allows the bot to receive events related to message reactions.

Tokens are generated specifically for a bot as its “password”. They should not be stored in
any of the bot source code files. They should be held in a safe place that is not public.

Bot Main File
Logging Level:

Intents:

Types of Intents:

Bot Token:

Documentation

Thus far, I have made error messages throughout the bot using the following pattern. These
messages are sent to standard output(terminal) when the bot has an error.

Due to the structure of discord and the bot, exceptions and errors DO NOT crash the bot regardless
if they are caught or not. With this in mind, we still want to catch all possible exceptions and errors
and display error messages. This will make debugging easier and minimize unexpected outcomes
of faulty code.\

Error: error message [function tag / identifiable name]

Error: config file could not be found [main::getToken]

In this instance ‘main’ is the name of the file and ‘getToken’ is the name of the function.
Typically, the first name on the left of the double colon will be the name of the class.
Although, this function does not belong to a class so I made it the name of the file.
Following this, if this code did not belong to a function, the tag would read: [main].

Error Messages

Syntax:

Example:

Documentation

1. Create a new Python file in the cogs/ directory, e.g. my_feature.py.
2. Define a class that inherits from commands.Cog and decorate it accordingly.

For example:

3. Import functions from utils/helpers.py in your cogs:

4. Use functions in utils/helpers.py :

Making a New Feature

How to Get Started Developing New
Features

Adding a New Cog

from discord.ext import commands

class MyFeatureCog(commands.Cog):

def __init__(self, bot):

 		self.bot = bot

@commands.command()

 	async def my_command(self, ctx):

 		await ctx.send("Hello from my new feature!")

def setup(bot):

 	bot.add_cog(MyFeatureCog(bot))

import utils.helpers as helpers

variable = helpers.function(arguments)

or,

helpers.function(arguments)

1. Keep Cogs Focused: Each cog should focus on a specific set of related commands or
functionality to maintain clarity and organization.

2. Use Helper Functions: Utilize helpers.py for any common functionality that may be
used in multiple cogs.

3. Documentation: Comment and document code in your cogs and helpers to make it
easier for team members to understand the purpose and usage of code.

Best Practices

Documentation

You can get data regarding the discord server environment using parameters to the function when
it is in a command decorator. [@commands.command()]

Ctx

Member -> discord.Member: This will give an object that contains data on the
member that sent the message. This data can be accessed using the . character.
Such as member.roles for a list of roles the member is enrolled in. The member can
also be accessed using ctx.author .

Getting Data

Getting data from Discord:

Parameters:

Documentation

Unit testing is the practice of testing individual units or components of code to ensure they work as
expected. A unit refers to the smallest testable part of an application, such as a function or a
method. Unit tests typically focus on testing the logic within functions, ensuring that each part of
the code behaves correctly.

Tests are automated and repeatable.
The goal is to test a single functionality in isolation, without dependencies on other
parts of the code or external systems (like databases or APIs).
Unit tests usually mock or stub external dependencies to ensure that the function or
method is the only thing being tested.

1. Catches bugs early: Writing tests forces you to think about edge cases and logic. Bugs
are easier to fix when caught early.

2. Improves code quality: Writing tests often leads to better, more modular code as you
design your code to be testable.

3. Helps with refactoring: Unit tests provide confidence that your code works as expected
when you make changes or refactor.

4. Documentation: Tests can serve as documentation for how a function is expected to
behave. {% endtab %}

{% tab title="Bot Examples" %}

If you are developing a Discord bot, unit testing can be extremely helpful in ensuring that your
bot behaves as expected. Here are a few ways unit testing can benefit you:

Code Testing

Unit Testing

In unit testing:

Benefits of Unit Testing

How Unit Testing Helps with
Developing Your Discord Bot

1. Testing Bot Commands

Discord bots often have commands that perform actions when a user types a command. Unit
testing can check that the bot responds correctly under various conditions.

Example: Test that the !hello command sends the correct reply message ("Hello,
User!").
How it helps: Ensures that commands like !help, !ban, and others work reliably, even if
the code changes.

2. Testing Event Handlers

Your bot responds to events, such as when a new user joins the server or a message is sent. Unit
tests can verify that the bot reacts correctly to specific events.

Example: Testing an event handler that sends a welcome message when a new user joins
the server.
How it helps: Helps ensure that your event listeners don't break when the bot code
changes.

3. Testing External API Calls

Many bots interact with external APIs (e.g., fetching weather data or interacting with a database).
Unit tests can mock external services to ensure that the bot handles API responses correctly.

Example: Testing a function that retrieves data from a weather API and responds to the
user with the weather information.
How it helps: Ensures that even if the API changes or goes down, your bot will continue
to work with mock data.

4. Testing Database Interactions

If your bot interacts with a database (e.g., storing user preferences or storing logs), you can unit
test database queries to ensure they work as expected.

Example: Verifying that a user's settings are correctly saved and retrieved from a
database.
How it helps: Prevents bugs related to data persistence, like saving wrong data or failing
to retrieve the correct data.

\

Python Examples
1. Setup the Environment

First, make sure you have the necessary libraries installed:

Command: pip install pytest discord.py

discord.py: The library used to create the Discord bot.
pytest: A testing framework.
unittest.mock: A module used for mocking objects in tests.

\

Let’s say you have a simple Discord bot command that replies with a greeting when a user types
!hello .

Now, you want to write a test to make sure the !hello command sends the correct greeting
message.

You’ll use unittest.mock to mock the ctx (the context that contains information about the message)
and the send method to avoid sending actual messages on Discord.

2. Example: Testing a Simple Discord Command

bot_commands.py

import discord

from discord.ext import commands

bot = commands.Bot(command_prefix="!")

@bot.command(name="hello")

async def hello(ctx):

 await ctx.send(f"Hello, {ctx.author.name}!")

3. Unit Test for the !hello Command

test_bot_commands.py

import pytest

from unittest.mock import MagicMock

from bot_commands import bot, hello

@pytest.mark.asyncio

async def test_hello_command():

Mock the context (ctx)

ctx = MagicMock()

Mock the send method

pytest.mark.asyncio: This decorator is used to run asynchronous tests. Since Discord bot
commands are asynchronous (using async def), we need to run them as async tests.
MagicMock: We use MagicMock to create mock objects for ctx and its send method. This
allows us to simulate a Discord context without actually sending messages to Discord.
ctx.author.name = 'TestUser': We simulate that the author of the command is a user
named "TestUser."
assert_called_with: This checks that the send method was called with the expected
message.

Let’s say your bot sends a welcome message when a new member joins the server. You can test
this event handler similarly.

Now, let's write a test to ensure the on_member_join event sends the correct welcome message.

ctx.send = MagicMock()

Simulate a user with the name 'TestUser'

ctx.author.name = 'TestUser'

Run the command

await hello(ctx)

Check that the send method was called with the expected message

ctx.send.assert_called_with('Hello, TestUser!')

Explanation of the Test:

4. Example: Testing Event Handlers

bot_commands.py

@bot.event

async def on_member_join(member):

 channel = discord.utils.get(member.guild.text_channels, name='general')

 if channel:

 await channel.send(f"Welcome to the server, {member.name}!")

test_bot_commands.py

Mocking member: We create a mock member object and set its name attribute to
simulate the new user.
Mocking text_channels: We mock the text_channels list to simulate that there is a channel
named "general."
Checking the send method: We verify that the bot sends the correct welcome message to
the "general" channel.

Many bots interact with external APIs (e.g., weather data). Let's mock an API call to show how you
can test these interactions.

from unittest.mock import MagicMock

import discord

from bot_commands import on_member_join

@pytest.mark.asyncio

async def test_on_member_join():

 # Mock the member object

 member = MagicMock()

 member.name = "NewUser"

 member.guild.text_channels = \[MagicMock(name="general")]

 # Mock the send method

 member.guild.text_channels\[0].send = MagicMock()

 # Call the event handler

 await on_member_join(member)

Check that the send method was called with the expected message

member.guild.text_channels\[0].send.assert_called_with("Welcome to the server, NewUser!")

Explanation:

5. Testing External API Calls (Mocking API Responses)

bot_commands.py

import requests

import discord

from discord.ext import commands

bot = commands.Bot(command_prefix="!")

To test this, we can mock the requests.get method to avoid making real HTTP requests.

patch("requests.get"): This replaces the real requests.get method with our mocked
version that returns the mock response.
Mocking the json() method: We simulate the response from the weather API by setting
mock_response.json.return_value to return a dictionary with the expected temperature
data.
Verifying the response: The test checks if the bot sends the correct weather information.

@bot.command(name="weather")

async def weather(ctx, location):

 # Simulate an API request to get weather data (mocked in the test)

 response = requests.get(f"https://api.weather.com/{location}")

 data = response.json()

 await ctx.send(f"The weather in {location} is {data\['temperature']}°C")

test_bot_commands.py

import pytest

from unittest.mock import patch, MagicMock

from bot_commands import weather

@pytest.mark.asyncio

async def test_weather_command():

 # Mock the context

 ctx = MagicMock()

 ctx.send = MagicMock()

 # Mock the API response

 mock_response = MagicMock()

 mock_response.json.return_value = {"temperature": 22}

 # Use patch to mock requests.get

 with patch("requests.get", return_value=mock_response):

 await weather(ctx, "London")

ctx.send.assert_called_with("The weather in London is 22°C")

Explanation:

To run the tests, simply execute the following command: pytest test_bot_commands.py

Running the Tests

Documentation

KeyCloak SSO R&D

Created main group for the Adventure Ted family. Then, created child groups for
separate departments. This allowed easier role assignment through inheritance.

(This process outlines the steps to create a default role mapping for
typical end user access)

 (Assigning the composite role just created allows basic access for all users in
child groups of Adventure Ted)

Next order of business left here for direction for myself or Ron

Oauth2 compose.yaml example

nginx.conf example to proxy all subdomains to oauth2

keycloak configuration once the other two are set up…

Seems we may have to create a realm per department, or find some other solution within to
have each dept go to their respective resources. will continue digging.

Ts stuff is proving to be quite a pain. Perhaps and overhaul to a different solution. If only I
had friends :C (I'm so alone)

Git Practices - for a quick reference so interns can familiarize themselves with Git/GitHub
How to Write a Git Commit Message - tutorial on best practices for creating Git Commit
messages
Git/GitHub Workflow - for our organization-specific approach to Git/GitHub workflow

Git/GitHub Workflow
Prerequisite Knowledge

https://www.freecodecamp.org/news/how-to-use-git-best-practices-for-beginners/
https://cbea.ms/git-commit/
https://docs.google.com/document/d/1hTfJgnv3vUVMl5H6uiw5XCE_MT-b_ZMstEkpjxrV_V4/edit?usp=sharing

